A GENERALIZATION OF JUNG'S THEOREM

M. Henk

ABSTRACT. The theorem of Jung establishes a relation between circumradius and diameter of a convex body. The half of the diameter can be interpreted as the maximum of circumradii of all 1-dimensional sections or 1-dimensional orthogonal projections of a convex body. This point of view leads to two series of j-dimensional circumradii, defined via sections or projections. In this paper we study some relations between these circumradii and by this we find a natural generalization of Jung's theorem.

Introduction

Throughout this paper E^d denotes the *d*-dimensional euclidean space and the set of all convex bodies $K \subset E^d$ — compact convex sets — is denoted by \mathcal{K}^d . The affine (convex) hull of a subset $P \subset E^d$ is denoted by $\operatorname{aff}(P)$ (conv(P)) and dim(P) denotes the dimension of the affine hull of P. The interior of P is denoted by $\operatorname{int}(P)$ and relint(P) denotes the interior with respect to the affine hull of P. $\|\cdot\|$ denotes the euclidean norm and the set of all *i*-dimensional linear subspaces of E^d is denoted by \mathcal{L}^d_i . L^{\perp} denotes for $L \in \mathcal{L}^d_i$ the orthogonal complement and for $K \in \mathcal{K}^d$, $L \in \mathcal{L}^d_i$ the orthogonal projection of K onto L is denoted by K|L.

The diameter, circumradius and inradius of a convex body $K \in \mathcal{K}^d$ is denoted by D(K), R(K) and r(K), respectively. For a detailed description of these functionals we refer to the book [BF]. With this notation we can define the following *i*-dimensional circumradii

Definition. For $K \in \mathcal{K}^d$ and $1 \leq i \leq d$ let

$$i) \quad R^{i}_{\sigma}(K) := \max_{L \in \mathcal{L}^{d}_{i}} \max_{x \in L^{\perp}} R(K \cap (x + L))$$
$$ii) \quad R^{i}_{\pi}(K) := \max_{L \in \mathcal{L}^{d}_{i}} R(K|L).$$

We obviously have $R_{\sigma}^{i+1}(K) \ge R_{\sigma}^{i}(K), R_{\pi}^{i+1}(K) \ge R_{\pi}^{i}(K), R_{\pi}^{i}(K) \ge R_{\sigma}^{i}(K)$ and $R_{\sigma}^{d}(K) = R_{\pi}^{d}(K) = R(K), R_{\sigma}^{1}(K) = R_{\pi}^{1}(K) = D(K)/2.$

The theorem of JUNG [J] states a relation between the circumradius and the diameter of a convex body. On account of the definition of $R^d_{\sigma}(K)$, $R^1_{\sigma}(K)$ we can describe his result as follows

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

¹⁹⁹¹ Mathematics Subject Classification. AMS 52A43.

Key words and phrases. Circumradius, Diameter, Inradius.

I would like to thank Prof. Dr. J. M. WILLS, who called my attention to these generalized circumradii

Theorem of JUNG. Let $K \in \mathcal{K}^d$. Then

$$R^d_{\sigma}(K) \le \sqrt{\frac{2d}{d+1}} R^1_{\sigma}(K), \qquad (1.1)$$

and equality holds if and only if K contains a regular d-simplex with edge length D(K).

In the same way the theorem may be described with the circumradii $R^d_{\rho}(K)$ and $R^1_{\rho}(K)$. Here we study in general the relations between the *i*-dimensional and *j*-dimensional circumradius of these both series and get the following results

Results

Theorem 1. Let $K \in \mathcal{K}^d$ and $1 \leq j \leq i \leq d$. Then

$$R^i_{\sigma}(K) \le \sqrt{\frac{i(j+1)}{j(i+1)}} R^j_{\sigma}(K), \qquad (1.2)$$

and equality holds for i > j if and only if K contains a regular *i*-simplex with edge length $R^j_{\sigma}(K)\sqrt{\frac{2(j+1)}{j}}$.

Theorem 2. Let $K \in \mathcal{K}^d$ and $1 \leq j \leq i \leq d$. Then

$$R^{i}_{\pi}(K) \le \sqrt{\frac{i(j+1)}{j(i+1)}} R^{j}_{\pi}(K), \qquad (1.3)$$

and equality holds for i > j if and only if an orthogonal projection of K onto an *i*-dimensional linear subspace contains a regular *i*-simplex with edge length $R^j_{\pi}(K)\sqrt{\frac{2(j+1)}{j}}$.

Let us remark that both theorems are a generalization of the classical theorem of JUNG since for i = d, j = 1 the inequalities (1.2) and (1.3) become (1.1).

Proofs

To prove these theorems it is necessary to examine in more detail the circumradii of simplices since the circumradius of a convex body K is determined by the circumradius of a certain simplex $\overline{T} \subset K$. This well known fact is described in the following lemma

Lemma 1. Let $K \subset \mathcal{K}^d$ and 0 be the center of the circumball of K. Then there exists a k-simplex $\overline{T} \subset K$, $\overline{T} = \operatorname{conv}(\{x^0, \ldots, x^k\})$ with

$$0 \in \operatorname{relint}(\overline{T}), R(\overline{T}) = R(K) \text{ and } ||x^i|| = R(K), 0 \le i \le k.$$

Proof. cf. [BF], p. 9 and p. 54.

q.e.d.

With this lemma it is easy to find such (d-1)-dimensional planes for a simplex which produce the maximal (d-1)-circumradius with respect to projections or sections.

Lemma 2. Let $T \in \mathcal{K}^d$ be a d-simplex, \hat{F} a face of T with maximal circumradius and $\hat{L} \in \mathcal{L}_{d-1}^d$, $\hat{x} \in \hat{L}^{\perp}$ with $\hat{x} + \hat{L} = \operatorname{aff}(\hat{F})$. Then

i)
$$R_{\sigma}^{d-1}(T) = R(T \cap (\hat{x} + \hat{L})) = R(\hat{F}),$$

ii) $R_{\pi}^{d-1}(T) = R(T|\hat{L}) = R(\hat{F}).$

Proof. Let $L_{d-1} \in \mathcal{L}_{d-1}^d$ with $R_{\pi}^{d-1}(T) = R(T|L_{d-1})$ and let $T|L_{d-1}$ the convex hull of the points x^0, \ldots, x^d , where x^0, \ldots, x^d denote the images of the vertices of T under the projection onto L_{d-1} . Further let 0 be the center of the circumball of $T|L_{d-1}$ and $\overline{T} \subset T|L_{d-1}, \overline{T} = \operatorname{conv}(\{x^0, \ldots, x^k\}), 1 \le k \le d-1, a k$ -simplex with the properties of lemma 1.

Now let F be a face of T containing such k + 1 vertices which are mapped onto x^0, \ldots, x^k with respect to the orthogonal projection onto L_{d-1} . We have

$$R(\widehat{F}) \ge R(F) \ge R(F|L_{d-1}) \ge R(\overline{T}) = R_{\pi}^{d-1}(T);$$

otherwise $R(\hat{F}) \leq R_{\sigma}^{d-1}(T) \leq R_{\pi}^{d-1}(T)$ and the assertion follows. q.e.d.

On account of the lemma above we have $R(S)/R_\pi^{d-1}(S)=R(S)/R_\sigma^{d-1}(S)=d/(d^2-1)$ $1)^{1/2}$ for a regular d-simplex S. That this is even an upper bound for every simplex is shown in the next lemma.

Lemma 3. Let $T \in \mathcal{K}^d$ a simplex. Then

i)
$$R(T) \le \frac{d}{\sqrt{d^2 - 1}} R_{\sigma}^{d-1}(T),$$

ii) $R(T) \le \frac{d}{\sqrt{d^2 - 1}} R_{\pi}^{d-1}(T),$

and equality holds if and only if T is a regular d-simplex.

Proof. If T is a regular d-simplex we have equality by lemma 2. Hence on account of $R_{\sigma}^{d-1}(T) \leq R_{\pi}^{d-1}(T)$ it suffices to prove the lemma for the (d-1)-circumradius $R^{d-1}_{\sigma}(T)$.

Let 0 be the center of the circumball of T and $\{x^0, \ldots, x^k\}$ a suitable subset of the vertices of T, such that $\overline{T} = \operatorname{conv}(\{x^0, \ldots, x^k\})$ has the properties of lemma 1. If k < d then

$$R(T) = R(\overline{T}) = R_{\sigma}^{d-1}(T) < \frac{d}{\sqrt{d^2 - 1}} R_{\sigma}^{d-1}(T).$$
(2.1)

Hence we may assume that $T = \operatorname{conv}(\{x^0, \ldots, x^d\})$ is a *d*-simplex with $0 \in \operatorname{int}(T)$ and $||x^i|| = R(T), 0 \le i \le d.$

Let λ be the maximal radius of a *d*-dimensional ball with center 0, which is contained in T. This ball touches a face F of T in a point λa , ||a|| = 1. Let F be given by $\operatorname{conv}(\{x^1,\ldots,x^d\})$. Since a is a normal vector of $\operatorname{aff}(F)$ we have

$$||x^{i} - \lambda a||^{2} = R(T)^{2} - \lambda^{2}, \quad 1 \le i \le d.$$

Hence λa is the center of the circumball of F [BF, p. 54] and it follows

$$R(T)^{2} - R_{\sigma}^{d-1}(T)^{2} \le \lambda^{2}.$$
(2.2)

M. HENK

For the inradius r(T) of a simplex T we have $r(T) \leq R(T)/d$ [F] and so by the choice of λ

$$\lambda^2 \le \frac{R(T)^2}{d^2}.\tag{2.3}$$

Along with (2.2) this shows the inequality i). If we have equality in the relation i) then from (2.1), (2.2) and (2.3) follows that T is a d-simplex with r(T) = R(T)/d. This is only possible if T is regular [F]. q.e.d.

Now we are able to prove the theorems.

Proof of **Theorem 1**. It obviously suffices to show the inequalities

$$R^{i}_{\sigma}(K) \le \frac{i}{\sqrt{i^{2} - 1}} R^{i-1}_{\sigma}(K), \quad 1 < i \le d.$$
(2.4)

Since the circumradii are invariant with respect to translations we may assume that there is an *i*-dimensional linear subspace $L_i \in \mathcal{L}_i^d$ with $R_{\sigma}^i(K) = R(K \cap L_i)$ and 0 is center of the circumball of $K \cap L_i$. Moreover let $T \subset (K \cap L_i)$ a k-simplex with the properties of lemma 1. Denoting by $R_{\sigma}^{i-1}(T; L_i)$ the (i-1)-circumradius of Twith respect to the euclidean space L_i we get from lemma 3

$$R(T) \le \frac{i}{\sqrt{i^2 - 1}} R_{\sigma}^{i-1}(T; L_i).$$
(2.5)

By the choice of T we have $R(T) = R^i_{\sigma}(K)$ and since $R^{i-1}_{\sigma}(K) \ge R^{i-1}_{\sigma}(T;L_i)$ the inequalities (1.1) are shown.

If an inequality of (1.1) is satisfied with equality for i > j we must have equality in (2.4) and (2.5). By lemma 3 this means that T is a regular *i*-simplex which satisfies the relation

$$R(T) = R^{i}_{\sigma}(K) = \sqrt{\frac{i(j+1)}{j(i+1)}} R^{j}_{\sigma}(K).$$
(2.6)

Since T is regular we have $R(T) = (i/(2i+2))^{1/2}D(T)$ and by (2.6) we see that T has the diameter (edge length) $R^j_{\sigma}(K)((2j+2)/j)^{1/2}$.

Now let T be a regular *i*-simplex contained in K with the given edge length. On account of (1.1) we get

$$R(T) = \sqrt{\frac{i}{2i+2}} D(T) = \sqrt{\frac{i(j+1)}{j(i+1)}} R^j_{\sigma}(K) \ge R^i_{\sigma}(K).$$
(2.7)

Clearly $R(T) \leq R^i_{\sigma}(K)$ and so we can replace ' \leq ' by '=' in (2.7). q.e.d.

Proof of **Theorem 2**. On account of lemma 3 the proof can be done in the same way as the proof of theorem 1. q.e.d.

Remarks

- (1) If we replace the first maximum condition by a minimum condition in the definition of the circumradii we get two other series of *i*-circumradii which now start with the half of the width of a convex body. If we further replace the circumradius by the inradius we totally get four series of circumradii and four series of inradii. Some of these functionals are studied in *Computational Geometry* [GK]. For a survey of these generalized circumradii and inradii we refer to [H].
- (2) Theorems involving inradius, circumradius, diameter and width have a long tradition in the geometry of convex bodies. In this context we refer to [BL], [BF], [E], [DGK].

References

- [BF] T. Bonnesen, W. Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934.
- [BL] W. Blaschke, Kreis und Kugel, Veit; Second ed., W. de Gruyter, Berlin, Leipzig, 1916.
- [DGK] L. Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives. In Convexity (V. Klee, ed.), Amer. Math. Soc. Proc. Symp. Pure Math. 13 (1963), 101–180.
- [E] H.G. Eggleston, *Convexity*, Cambridge Univ. Press, Cambridge, 1958, 1969.
- [F] L. Fejes Tóth, Extremum properties of the regular polytopes, Acta. Math. Acad. Sci. Hungar. (1955), 143–146.
- [GK] P. Gritzmann and V. Klee, Inner and outer j-radii of convex bodies in finite-dimensional normed spaces, to appear in Dis. and Comp. Geometry (1991).
- [H] M. Henk, Ungleichungen f
 ür sukzessive Minima und verallgemeinerte In- und Umkugelradien konvexer K
 örper, Dissertation, Universitt Siegen (1991).
- [J] H.W.E. Jung, Über die kleinste Kugel, die eine räumliche Figur einschlieβt, J. Reine Angew. Math. 123 (1901), 241-257.

Mathematisches Institut, Universität Siegen, Hölderlinstrasse 3, D-W-5900 Siegen,∎ Federal Republic of Germany.