
A GENERALIZATION OF JUNG’S THEOREM

M. Henk

Abstract. The theorem of Jung establishes a relation between circumradius and
diameter of a convex body. The half of the diameter can be interpreted as the
maximum of circumradii of all 1-dimensional sections or 1-dimensional orthogonal
projections of a convex body. This point of view leads to two series of j-dimensional

circumradii, defined via sections or projections. In this paper we study some relations
between these circumradii and by this we find a natural generalization of Jung’s
theorem.

Introduction

Throughout this paper Ed denotes the d-dimensional euclidean space and the
set of all convex bodies K⊂Ed — compact convex sets — is denoted by Kd. The
affine (convex) hull of a subset P ⊂ Ed is denoted by aff(P ) (conv(P )) and dim(P )
denotes the dimension of the affine hull of P . The interior of P is denoted by int(P )
and relint(P ) denotes the interior with respect to the affine hull of P . ‖ · ‖ denotes
the euclidean norm and the set of all i-dimensional linear subspaces of Ed is denoted
by Ld

i . L⊥ denotes for L ∈ Ld
i the orthogonal complement and for K ∈ Kd, L ∈ Ld

i

the orthogonal projection of K onto L is denoted by K|L.
The diameter, circumradius and inradius of a convex body K ∈ Kd is denoted

by D(K), R(K) and r(K), respectively. For a detailed description of these func-
tionals we refer to the book [BF]. With this notation we can define the following
i-dimensional circumradii

Definition. For K ∈ Kd and 1 ≤ i ≤ d let

i) Ri
σ(K) := max

L∈Ld

i

max
x∈L⊥

R(K ∩ (x + L)),

ii) Ri
π(K) := max

L∈Ld

i

R(K|L).

We obviously have Ri+1
σ (K) ≥ Ri

σ(K), Ri+1
π (K) ≥ Ri

π(K), Ri
π(K) ≥ Ri

σ(K) and
Rd

σ(K) = Rd
π(K) = R(K), R1

σ(K) = R1
π(K) = D(K)/2.

The theorem of Jung [J] states a relation between the circumradius and the
diameter of a convex body. On account of the definition of Rd

σ(K), R1
σ(K) we can

describe his result as follows
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Theorem of Jung. Let K ∈ Kd. Then

Rd
σ(K) ≤

√

2d

d + 1
R1

σ(K), (1.1)

and equality holds if and only if K contains a regular d-simplex with edge length

D(K).

In the same way the theorem may be described with the circumradii Rd
ρ(K) and

R1
ρ(K). Here we study in general the relations between the i-dimensional and

j-dimensional circumradius of these both series and get the following results

Results

Theorem 1. Let K ∈ Kd and 1 ≤ j ≤ i ≤ d. Then

Ri
σ(K) ≤

√

i(j + 1)

j(i + 1)
Rj

σ(K), (1.2)

and equality holds for i > j if and only if K contains a regular i-simplex with edge

length Rj
σ(K)

√

2(j+1)
j .

Theorem 2. Let K ∈ Kd and 1 ≤ j ≤ i ≤ d. Then

Ri
π(K) ≤

√

i(j + 1)

j(i + 1)
Rj

π(K), (1.3)

and equality holds for i > j if and only if an orthogonal projection of K onto an i-

dimensional linear subspace contains a regular i-simplex with edge length Rj
π(K)

√

2(j+1)
j .

Let us remark that both theorems are a generalization of the classical theorem of
Jung since for i = d, j = 1 the inequalities (1.2) and (1.3) become (1.1).

Proofs

To prove these theorems it is necessary to examine in more detail the circum-
radii of simplices since the circumradius of a convex body K is determined by the
circumradius of a certain simplex T ⊂ K. This well known fact is described in the
following lemma

Lemma 1. Let K ⊂ Kd and 0 be the center of the circumball of K. Then there

exists a k-simplex T ⊂ K, T = conv({x0, . . . , xk}) with

0 ∈ relint(T ), R(T ) = R(K) and ‖xi‖ = R(K), 0 ≤ i ≤ k.

Proof. cf. [BF], p. 9 and p. 54. q.e.d.

With this lemma it is easy to find such (d − 1)-dimensional planes for a simplex
which produce the maximal (d − 1)-circumradius with respect to projections or
sections.



A GENERALIZATION OF JUNG’S THEOREM 3

Lemma 2. Let T ∈ Kd be a d-simplex, F̂ a face of T with maximal circumradius

and L̂ ∈ Ld
d−1, x̂ ∈ L̂⊥ with x̂ + L̂ = aff(F̂ ). Then

i) Rd−1
σ (T ) = R(T ∩ (x̂ + L̂)) = R(F̂ ),

ii) Rd−1
π (T ) = R(T |L̂) = R(F̂ ).

Proof. Let Ld−1 ∈ Ld
d−1 with Rd−1

π (T ) = R(T |Ld−1) and let T |Ld−1 the convex

hull of the points x0, . . . , xd, where x0, . . . , xd denote the images of the vertices of
T under the projection onto Ld−1. Further let 0 be the center of the circumball of
T |Ld−1 and T ⊂ T |Ld−1, T = conv({x0, . . . , xk}), 1 ≤ k ≤ d − 1, a k-simplex with
the properties of lemma 1.

Now let F be a face of T containing such k + 1 vertices which are mapped onto
x0, . . . , xk with respect to the orthogonal projection onto Ld−1. We have

R(F̂ ) ≥ R(F ) ≥ R(F |Ld−1) ≥ R(T ) = Rd−1
π (T );

otherwise R(F̂ ) ≤ Rd−1
σ (T ) ≤ Rd−1

π (T ) and the assertion follows. q.e.d.

On account of the lemma above we have R(S)/Rd−1
π (S) = R(S)/Rd−1

σ (S) = d/(d2−
1)1/2 for a regular d-simplex S. That this is even an upper bound for every simplex
is shown in the next lemma.

Lemma 3. Let T ∈ Kd a simplex. Then

i) R(T ) ≤ d√
d2 − 1

Rd−1
σ (T ),

ii) R(T ) ≤ d√
d2 − 1

Rd−1
π (T ),

and equality holds if and only if T is a regular d-simplex.

Proof. If T is a regular d-simplex we have equality by lemma 2. Hence on account
of Rd−1

σ (T ) ≤ Rd−1
π (T ) it suffices to prove the lemma for the (d − 1)-circumradius

Rd−1
σ (T ).
Let 0 be the center of the circumball of T and {x0, . . . , xk} a suitable subset of

the vertices of T , such that T = conv({x0, . . . , xk}) has the properties of lemma 1.
If k < d then

R(T ) = R(T ) = Rd−1
σ (T ) <

d√
d2 − 1

Rd−1
σ (T ). (2.1)

Hence we may assume that T = conv({x0, . . . , xd}) is a d-simplex with 0 ∈ int(T )
and ‖xi‖ = R(T ), 0 ≤ i ≤ d.

Let λ be the maximal radius of a d-dimensional ball with center 0, which is
contained in T . This ball touches a face F of T in a point λa, ‖a‖ = 1. Let F be
given by conv({x1, . . . , xd}). Since a is a normal vector of aff(F ) we have

‖xi − λa‖2
= R(T )2 − λ2, 1 ≤ i ≤ d.

Hence λa is the center of the circumball of F [BF, p. 54] and it follows

R(T )2 − Rd−1
σ (T )2 ≤ λ2. (2.2)
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For the inradius r(T ) of a simplex T we have r(T ) ≤ R(T )/d [F] and so by the
choice of λ

λ2 ≤ R(T )2

d2
. (2.3)

Along with (2.2) this shows the inequality i). If we have equality in the relation i)
then from (2.1), (2.2) and (2.3) follows that T is a d-simplex with r(T ) = R(T )/d.
This is only possible if T is regular [F]. q.e.d.

Now we are able to prove the theorems.

Proof of Theorem 1. It obviously suffices to show the inequalities

Ri
σ(K) ≤ i√

i2 − 1
Ri−1

σ (K), 1 < i ≤ d. (2.4)

Since the circumradii are invariant with respect to translations we may assume that
there is an i-dimensional linear subspace Li ∈ Ld

i with Ri
σ(K) = R(K ∩ Li) and 0

is center of the circumball of K ∩ Li. Moreover let T ⊂ (K ∩ Li) a k-simplex with
the properties of lemma 1. Denoting by Ri−1

σ (T ;Li) the (i − 1)-circumradius of T
with respect to the euclidean space Li we get from lemma 3

R(T ) ≤ i√
i2 − 1

Ri−1
σ (T ;Li). (2.5)

By the choice of T we have R(T ) = Ri
σ(K) and since Ri−1

σ (K) ≥ Ri−1
σ (T ;Li) the

inequalities (1.1) are shown.

If an inequality of (1.1) is satisfied with equality for i > j we must have equality
in (2.4) and (2.5). By lemma 3 this means that T is a regular i-simplex which
satisfies the relation

R(T ) = Ri
σ(K) =

√

i(j + 1)

j(i + 1)
Rj

σ(K). (2.6)

Since T is regular we have R(T ) = (i/(2i + 2))1/2D(T ) and by (2.6) we see that T
has the diameter (edge length) Rj

σ(K)((2j + 2)/j)1/2.

Now let T be a regular i-simplex contained in K with the given edge length. On
account of (1.1) we get

R(T ) =

√

i

2i + 2
D(T ) =

√

i(j + 1)

j(i + 1)
Rj

σ(K) ≥ Ri
σ(K). (2.7)

Clearly R(T ) ≤ Ri
σ(K) and so we can replace ’≤’ by ’=’ in (2.7). q.e.d.

Proof of Theorem 2. On account of lemma 3 the proof can be done in the same
way as the proof of theorem 1. q.e.d.
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Remarks

(1) If we replace the first maximum condition by a minimum condition in the
definition of the circumradii we get two other series of i-circumradii which
now start with the half of the width of a convex body. If we further replace
the circumradius by the inradius we totally get four series of circumradii and
four series of inradii. Some of these functionals are studied in Computational

Geometry [GK]. For a survey of these generalized circumradii and inradii
we refer to [H].

(2) Theorems involving inradius, circumradius, diameter and width have a long
tradition in the geometry of convex bodies. In this context we refer to [BL],
[BF], [E], [DGK].
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